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We present a generalized theory for dealing with the dynamic response of linear
systems to moving sources. Stochastic characteristics of the response of linear
systems to moving stochastic sources are theoretically analyzed based on the
time-convolution expression established in this paper. We show that the random
response of a linear system under a moving stationary stochastic source becomes
a non-stationary process, for which the commonly used spectral analysis is not
valid. To overcome this obstacle, the follow-up spectral analysis procedure is
introduced. Statistical characteristics of the dynamic response are then given in the
"xed and follow-up co-ordinates. A brief physical explanation related to time-
frequency domain analysis is also provided. The theory developed in the paper can
be universally applied to the moving source problem for linear systems.

( 2000 Academic Press
1. INTRODUCTION

The current design procedures for transportation infrastructure (e.g., highway
pavement, airport runaway, rail-track and bridge) are based on static theory. This
is reasonable under the circumstance of low-speed vehicle motions. As the speed
goes up, dynamic loads caused by vehicle vibration may result in signi"cant
di!erences between static and dynamic response of structures. In particular, it can
become di$cult to interpret the mechanism of certain failure phenomena, such as
material fatigue, within the framework of static theory. In practice, these failures are
related to the dynamic response of structures.

The dynamic response of continuum media such as beam, slab, and half-space
under moving sources has been of interest for several decades. A number of studies
have addressed this subject in various "elds of physics, such as references [1, 2] for
hydraulics, reference [3] for acoustics and references [4}10] for elastodynamics.
One may refer to reference [11] for more detailed reviews. In most of these studies,
however, only special cases are considered. For example, the most commonly used
0022-460X/00/040957#16 $35.00/0 ( 2000 Academic Press
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hypothesis in the literature is to assume that the moving source is a constant load
with constant velocity. The formidable obstacle in the moving source problem is
that the source position varies with time. This makes axisymmetric co-ordinates
useless for representing the governing equations and also increases the complexity
of the theoretical analysis due to the appearance of the velocity parameter. There is
no generally applicable method for moving source problems.

There is evidence [11}14] indicating that vehicle-vibration-induced dynamic
loads are moving stochastic loads that are primarily relevant to surface roughness
of the structures. Assuming that other variable are constant, the higher the velocity
of a vehicle, the stronger the vibration and the dynamic pavement loads [14, 15].
To determine the in#uence of roughness on structural response, we must regard
the vibration-induced dynamic load as a moving stochastic source. A few
investigations have addressed the dynamic response of media with the
con"guration of random moving load [16] and random foundation [17]. However,
to the best knowledge of the authors, the study of the dynamic response of linear
systems to moving stochastic sources has not been found in the literature.

The objective of this paper is to provide a theoretical foundation for the moving
source problem. A time-convolution formulation is derived based on physical laws.
This provides a general expression for the solution of the moving source problem.
Deterministic and stochastic source conditions are both considered in the analysis.
Aspects of random response including the mean, variance, correlation function, and
power spectral density (PSD) are all considered in detail.

2. DESCRIPTION OF THE MOVING SOURCE PROBLEM

Consider the moving source problem described in reference [11]. A linear
medium with region R and boundary B is initially at rest. The medium may be
in"nite or "nite, such as a half-space or a multilayer medium. A moving source
F(x, t) with a spatial amplitude distribution is applied on the plane z"z

h
of the

medium. It then travels at constant speed v along a straight line (see Figure 1).
If the load is applied at the moment t"0, it is called a suddenly applied moving

load. Otherwise, the load is applied at the moment t"!R and called a steadily
applied moving load. The former corresponds to the transient response of the
medium, and the latter corresponds to the steady state response of the medium.
These two types of moving loads speci"ed in reference [11] are respectively
represented by

F(x, t)"H[r2
0
!(x!vt)2!y2]d(z!z

h
)p (t)H(t)/nr2

0
(1)

and

F(x, t)"H[r2
0
!(x!vt)2!y2]d (z!z

h
)p (t)/nr2

0
, (2)

where p ( . ) describes a source signature and r
0

is the radius of the source. In
addition, H( . ) represents the Heaviside step function and d( . ) represents the Dirac



Figure 1. Sketch of a moving source: (a) side view, (b) top view.
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delta function. These are de"ned respectively by

H (t!t
0
)"G

0 if t(t
0
,

1
2

if t"t
0
,

1 if t't
0
.

(3)

and

P
=

~=

f (x)d (x!x
0
) dx"f (x

0
) and P

=

~=

d(x!x
0
) dx"1. (4)

The problem here is to compute the dynamic response of the linear medium under
a moving source F(x, t).

3. DETERMINISTIC SOURCE

Initially, we consider the deterministic problem. That is, p(t) presented in
equation (1) and (2) is a deterministic function rather than a random process. It
is convenient to assume a three-dimensional con"guration with observation
variable x"(x, y, z), source variable n"(m, g, f), and time t*0. Suppose a linear
di!erential operator O describes the dynamic property of a physical system.
Di!erent systems possess di!erent dynamic properties and operators. For instance,
the operator of a speci"ed elastodynamic problem is given by the well-known
Navier}Stoke's "eld equations, Green's function is then de"ned as the fundamental
solution of the system. In other words, for the problem discussed in the paper.
Green's function corresponds to the solution of the system governing equations as
the point source takes the form of a Dirac delta function in both spatial and
temporal domain.

Without loss of generality, vanishing initial conditions are considered here.
According to the causality for a realistic system, Green's function G(x, t)"0
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for t(0. We may then write

O[G (x!m, t!q)]"d (x!n)d (t!q). (5)

Here, the initiation of the source is delayed by q. Therefore, the physical law
requires that for Green's function, t)q. The properties of the medium under
consideration are accounted for in the operator O, while approximate interface
conditions relate the "eld quantities in layers with di!erent media. Equation (5)
therefore applied to the classes of the con"guration that are mentioned in the
beginning of this paper. Since the steady-state solution can be derived from
the transient solution, we initially need only to analyze the suddenly applied
moving load.

We introduce a linear integral operator I as

I"P
t

0
P
D

f (n, q)p(q) dn dq, (6)

where the kernel f describes a spatial amplitude distribution within "nite domain
D in co-ordinate n"(m, g, f), and where the kernel p is a transient source signature
with p (t)"0 for t)0. The response of a linear system to a "nite source distribution
with arbitrary signature is obtained by applying the integral operator to both sides
of equation (5). Assuming that the operator is bounded, we may interchange the
order of the integral operator and the O. After carrying out the integration we "nd

u(x, t)"P
t

0
P
D

f (n, q)G (x!n, t!q) dn dq, (7)

where u(x, t) represents the displacement "eld of the medium and the upper limit of
the time convolution is determined by the time of interest.

If we set f (x, t)"F (x, t), it is straightforward to see that the kernel f (x, t) can be
replaced by equation (1). Substituting equation (1) into equation (7) we can rewrite
u(x, t) as

u(x, t)"P
t

0

p (q) P
D

H[r2
0
!(m!vt)2!g2]

nr2
0

d (f!z
h
)G (x!m, t!q) dn dq

"P
t

0

p (q) P
D

H(r2
0
!m@2!g@2)

nr2
0

d(f@)G(x!m@!vq, y!g@, z!f@ (8)

!z
h
, t!q) dn@ dq

using the transformation m@"m!vq, g@"g and f@"f. The new "nite domain D@
corresponds to the spatial amplitude distribution in the new co-ordinate
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n@"(m@, g@, f@ ). By de"ning the impulse unit response function h as

h(x, t)"P
D{

H (r2
0
!m@2!g@2)

nr2
0

d(f@)G (x!m@, t) dm@, (9)

we can rewrite equation (8) as

u(x, t)"P
t

0

p(q)h(x!vq, z!z
h
, t!q) dq. (10a)

If the load is a steadily applied moving load, corresponding to the steady state
response of the medium, the solution can be obtained by changing the lower limit of
the integration in equation (10a) from 0 to !R, i.e.,

u(x, t)"P
=

0

p (t!h)h(x!vt#vh, y, z, z!z
h
, h) dh, (10b)

where h"t!q. It is also easy to see from equations (7) and (9) that the impulse
unit response function h corresponds to the solution, since the applied load takes
the form F(x, t)"H (r2

0
!x2!y2)d (z)d (t)/nr2

0
.

Both equations (7) and (10a, b) show a universal representation for the solution
of the moving source problem. In the case of a source from a surface, the analysis is
similar, except that the solution is obtained by letting z

h
"0 in equations (10a, b). If

the load is a constant with p(t)"pN , the transient response and the steady state
response are given by

u(x, t)"pN P
t

0

h (x!vq, y, z!z
h
, t!q) dq (11)

and

u(x, t)"pN P
t

~=

h(x!vq, y, z!z
h
, t!q) dq (12)

respectively.

4. STOCHASTIC SOURCE CONDITION

A large class of time-dependent sources such as explosion and vehicle-induced
dynamic loads may cause structural random response. The attributes of this
response depend on both the characteristics (e.g., frequency content) and the
structural properties (e.g., eigenfrequencies, damping, etc.) of the source. Generally,
time-dependent loading shows statistical variations and, consequently, random
response. Since time-dependent random variables are involved, the description of
the response as deterministic is not su$cient. Thus, a stochastic process is needed to
analyze a moving stochastic source.

De5nition. A stochastic process s(t) is called weakly stationary if its expectation is
independent of time t and its correlation function depends only on the time interval



962 L. SUN AND B. S. GREENBERG
q"t
2
!t

1
, i.e.,

sN "E[s (t)], Rss(q)"E[s (t
1
)s(t

2
)], (13, 14)

where sN and Rss are, respectively, mean and autocorrelation function of a
stationary stochastic process [17].

It should be noted that in the case of Gaussian stochastic processes, weak
stationary implies strong stationary [18]. According to Wiener}Khintchine theory,
the PSD Sss(u) and correlation function Rss(q) of a stationary process constitute
a pair of Fourier transforms,

Sss(u)"(1/2n) P
=

~=

Rss(q) e~*uq dq, (15)

Rss(q)"P
=

~=

Sss(u) e*uq du, (16)

where u is the angular frequency and q the time interval.
In the derivation of equations (7) an (10a, b) we require no special assumptions

on p(t). Therefore, if p(t) is a stochastic process, equations (10a, b) become integrals
in the sense of Stieltjes integration [19]. Taking the expectation of both sides of
equations (10a, b) and using the exchangeability of expectation and integration, we
obtain the mean of the transient and the steady state response, i.e.,

E[u(x, t)]"P
t

0

E[p (q)]h(x!vq, y, z!z
h
, t!q) dq, (17)

E[u(x, t)]"P
=

0

E[p (t!h)]h(x!vq#vh, y, z!z
h
, h) dh, (18)

It is not di$cult to obtain the spatial-time correlation functions for the transient
and steady state response. That is,

R
6
(x

1
, x

2
; t

1
, t

2
)"P

t2

0
P

t1

0

R
p
(q

2
!q

1
)h (x

1
!vq

1
, y

1
, z

1
!z

h
, t

1
!q

1
)

]h(x
2
!vq

2
, y

2
, z

2
!z

h
, t

2
!q

2
) dq

1
dq

2
, (19)

R
6
(x

1
, x

2
; t

1
, t

2
)"P

t2

~=
P

t1

~=

R
p
(q

2
!q

1
)h(x

1
!vq

1
, y

1
, z

1
!z

h
, t

1
!q

1
)

]h(x
2
!vq

2
, y

2
, z

2
!z

h
, t

2
!q

2
) dq

1
dq

2
, (20)

where R
u

and R
p

are correlation functions of the displacement response u(x, t)
and the source p(t) respectively. Letting x "x "x, we obtain the time
1 2
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autocorrelation function

R
6
(x ; t

1
, t

2
)"P

t2

0
P

t1

0

R
p
(s

2
!s

1
)h (x

1
!vq

1
, y , z!z

h
, t

1
!q

1
)

]h (x!vq
2
, y , z!z

h
, t

2
!q

2
) dq

1
dq

2
, (21)

and

R
6
(x ; t

1
, t

2
)"P

=

0
P

=

0

R
p
(t
2
!t

1
#h

1
!h

2
)h(x!vt

1
#vh

1
, y , z!z

h
, h

1
)

]h(x!vq
2
#vh

2
, y , z!z

h
, h

2
) dh

1
dh

2
, (22)

where h
j
"t

j
!q

j
( j"1, 2). By substituting t

1
"t

2
"t into equations (21) and

(22), it is straightforward to "nd second moment functions, i.e., the mean-square
functions of the random response.

One of the most signi"cant properties of a linear system is that if the input of the
system is a stationary process, the output is also a stationary process [19, 20].
However, this conclusion only applies to the "xed source problem (see reference
[11]). To show this we introduce the following theorems.

Theorem 1. Consider the steady state problem of a stochastic source with ,xed
position. If the random source (i.e., the input) to a linear system is a stationary
stochastic process, then the random response (i.e., the output) is a stationary stochastic
process.

Proof. Since the random source is a stationary stochastic process, we have

E[p(t)]"pN , (23)

where pN is the mean of the stationary stochastic process p(t). Letting v"0 and
E[p(t)]"pN in equations (17) and (18), for the source-"xed problem, we get the
mean function of the transient and the steady state response,

E[u(x, t)]"pN P
t

0

h (x, y, z!z
h
, h) dh, E[(u(x, t)]"pN P

=

0

h(x, y, z!z
h
, h) dh.

(24, 25)

Letting h
j
"t

j
!q

j
( j"1, 2) in equation (21) and v"0 in equations (21) and (22),

we get the autocorrelation function

R
6
(x; t

1
, t

2
)"P

t2

0
P

t1

0

R
p
(t
2
!t

1
#h

1
!h

2
)h(x, y, z!z

h
, h

1
)h (x, y, z!z

h
, h

2
) dh

1
dh

2

(26)
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for the transient solution and

R
6
(x; t

1
, t

2
)"P

=

0
P

=

0

R
p
(t
2
!t

1
#h

1
!h

2
)h (x, y, z!z

h
, h

1
)h(x, y, z!z

h
, h

2
) dh

1
dh

2

(27)

for the steady state solution. Note that equation (25) is independent of t and that
equation (27) depends only on the time di!erence t

2
!t

1
. Therefore, the stochastic

process is stationary and the proof is complete. K

Equations (24) and (26) are the general solutions for transient response. These are
clearly not stationary because time t is contained in the upper limit of the
integration as well as in the kernel function of the transient solution.

We now consider two deterministic problems. These are the problem with
a suddenly applied moving source and the problem with steadily applied moving
source. The sources for these two problems respectively take the form

F(x, t)"H(r2
0
!x2!y2)d (z!z

h
)pN H(t)/nr2

0
(28)

and
F(x, t)"H(r2

0
!x2!y2)d(z!z

h
)pN (t)/nr2

0
. (29)

We can see that the right-hand sides of equations (24) and (25) correspond to the
solutions of these deterministic problems. Furthermore, the steady state solution in
equation (25) is time independent, therefore, it degrades to the static solution
corresponding to a source with stationary position and amplitude, i.e., equation
(29).

Theorem 2. For the steady state problem with a moving stochastic source, the random
response of a linear system is a non-stationary stochastic process even if the random
signature p (t) is a stationary stochastic process.

Proof. The proof is based on the de"nition of stationary processes. In this case, the
mean of the transient and the steady state response are respectively given by

E[u(x, t)]"pN P
t

0

h(x!vq, y, z!z
h
, t!q) dq (30)

and

E[u(x, t)]"pN P
=

0

h(x!vq#vh, y, z!z
h
, h) dh. (31)

Equations (21) and (22) give the autocorrelation function for the transient and the
steady state response respectively. Since these functions depend on time, and not
just the time lag, equations (15) and (16) cannot be satis"ed. This shows that the
steady state solution of a moving source problem cannot be a stationary stochastic
process and the proof is complete. K
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We again consider two deterministic problems. The sources for a suddenly
applied moving load and a steadily applied moving load respectively take the forms
of

F(x, t)"H[r2
0
!(x!vt)2!y2]d (z!z

h
)pN H(t)/nr2

0
(32)

and

F(x, t)"H[r2
0
!(x!vt)2!y2]d(z!z

h
)pN /nr2

0
. (33)

Clearly, the right-hand side of equations (32) and (33) correspond to boundary
conditions of the two deterministic problems.

For any physical system that is described by linear equations, Theorems 1 and
2 apply. It is useful to realize that although the system in Theorem 2 is a linear
system, it essentially becomes a time-varying system when a moving source is
applied. In contrast, the linear system in Theorem 1 is time invariant. Whether the
source is "xed or moving, the transient response is always a non-stationary process
because of the involved time variable. In the following sections, we will only discuss
steady state solutions with regard to the moving stochastic source problem.

5. FREQUENCY DOMAIN ANALYSIS

Theorems 1 and 2 clearly indicate that there is an essential di!erence between the
"xed source problem and the moving source problem. For the "xed source
problem, the linear system is time invariant. So, we can directly obtain frequency
components of the random source and the linear system by measuring the time
history of random response at an arbitrary "eld point, say, x, of the medium. In
addition, spectral analysis (Fourier analysis) techniques for stationary processes are
applicable to the random response. This is because the spectral analysis is used to
represent a time-invariant variable in terms of the cumulative sum of a series of
sinusoid signals that represent steady state functions of time. However, since the
random response for the moving source problem is a non-stationary process, we
cannot directly obtain frequency information by applying spectral analysis to
sampled records at a "xed point.

Since transient solutions are time dependent rather than time-lag dependent,
Fourier spectral analysis techniques based on equations (15) and (16) do not apply.
Furthermore, equations (15) and (16) do not apply even to the steady state response
of a linear system if the source is moving. Equations (15) and (16) are satis"ed if and
only if the source is a stochastic stationary process with "xed position.

We show that there are two ways to overcome this obstacle. Since the random
response of the moving source problem is a non-stationary stochastic process,
one way is to take advantage of spectral analysis of non-stationary processes.
Essentially, this approach revises the de"nition of PSD of stationary processes.
Another approach is to develop a special technique that is applicable to the moving
source problem. In the following subsections, we will demonstrate these two
approaches.



966 L. SUN AND B. S. GREENBERG
5.1. NON-STATIONARY STOCHASTIC PROCESS SPECTRAL ANALYSIS

Several kinds of PSD de"nitions have been developed for treating non-stationary
process spectral analysis. Here we cite the generalized PSD developed in reference
[21] to apply to the current problem. Applying the double Fourier transform to the
time autocorrelation function R

6
(x; t

1
, t

2
), we get the generalized PSD,

S
6
(x; u

1
, u

2
)"(2n)~2 P

=

~=
P

=

~=

R
6
(x; t

1
, t

2
)e~*(u2t2~u1 t1) dt

1
dt

2
, (34)

and the inverse transform gives the correlation function

R
6
(x; t

1
, t

2
)"P

=

~=
P

=

~=

S
6
(x; u

1
, u

2
)e*(u2t2~u1 t1) du

1
du

2
. (35)

Here a su$cient condition for the existence of the generalized PSD is the absolute
integrability of the form

P
=

~=
P

=

~=

DR
6
(x; t

1
, t

2
)D dt

1
dt

2
(#R. (36)

The impulse unit response function for the moving source problem depends on
both the time t and the time interval q. Consequently, the frequency response
function for the moving source problem is a function of both frequency u and time
t. Here we denote the frequency response function as H(x; u, t) and require that
h(h)"0 for h(0. We de"ne H(x; u, t) through

u(x, t)"H(x; u, t)e*ut . (37)

By substituting the periodic excitation e*ut for p (t) in equation (10b) and comparing
with equation (37) we obtain frequency response for the impulse unit response
function,

H(x; u, t)"P
=

~=

h(x!vt#vh, y, z!z
h
, h) e*uh dh. (38)

Equations (38) and (31) yield the mean function in terms of the frequency response
function,

E[u(x, t)]"pN H (x; 0, t), (39)

where pN "E[p (t)]. For the time autocorrelation function, we have

R
6
(x; t

1
, t

2
)"P

=

~=

H (x; u, t
1
)S

p
(u)H(x;!u, t

2
) e*u2(t2~t1) du, (40)
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where S
p
(u) is the load PSD. Consequently, the mean-square function is

t2
6
(x; t)"P

=

~=

DH(x; u, t) D2S
p
(u) du (41)

and the generalized PSD for the random response of the system is

S
6
(x; u

1
, u

2
; t

1
, t

2
)"H(x; u

1
, t

1
)S

p
(u)H(x;!u

2
t
2
), (42)

where we have used the relation

S (u
1
, u

2
)"d(u

1
!u

2
)S (u

1
) (43)

in which S (u
1
) is the PSD of a stationary process.

Although the response-excitation relationship of a linear system can be
established within the framework of non-stationary process spectral analysis, it is
di$cult to provide a physical explanation for the generalized PSD. Also, we cannot
obtain the generalized PSD from only a small sample of data. These shortcomings
led us to develop a follow-up spectral analysis technique, by which the commonly
used spectral analysis technique is still applicable [11].

5.2. FOLLOW-UP SPECTRAL ANALYSIS

Using equation (10b) we obtain the following expression if we consider random
response of a moving "eld point (x#vt, y, z):

u(x#vt, y, z, t)"P
=

0

p(t!h)h(x#vh, y, z!z
h
, h) dh. (44)

Clearly, the moving "eld point (x#vt, y, z) is travelling at the same speed as the
moving source. Suppose a new co-ordinate X exactly follows the moving source.
The relation of this follow-up coordinate (i.e., moving co-ordinate) and the old
co-ordinate X (i.e., "xed co-ordinate) is x@"x!vt, y@"y, z@"z. The moving "eld
point (x#vt, y, z) in the "xed co-ordinate becomes a stationary "eld point in the
follow-up co-ordinate; thus from equation (44) we obtain

u (x@, t)"P
=

0

p (t!h)h(x#vh, y, z!z
h
, h) dh. (45)

Taking the expectation of both sides of equation (45), we immediately identify the
mean of the random response at "eld point x@ in the follow-up co-ordinate,

E[u(x@, t)]"pN P
=

0

h (x#vh, y, z!z
h
, h) dh, (46)
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where E[p(t)]"pN . Similarly, the time autocorrelation function for the random
response at "eld point x@ in the follow-up coordinate becomes

R
6
(x@; q Dq/t2~t1

)"P
=

0
P

=

0

R
p
(q#h

1
!h

2
)h (x#vh

1
, y, z!z

h
, h

1
)

]h(x#vh
2
, y, z!z

h
, h

2
) dh

1
dh

2
. (47)

From equations (46) and (47) it is clear that in the follow-up co-ordinates the
random response at "eld point x@ has been converted to a stationary process. From
equation (31) we see that the mean function of a linear system in the follow-up
co-ordinate responding to a moving stationary stochastic source is equivalent to
that of the same system in the "xed co-ordinate system. However, the "xed
co-ordinate system is responding to a moving deterministic source whose
amplitude is a constant equal to the mean of the moving stationary stochastic
source.

Letting t
1
"t

2
"t, we write the mean-square function for the random response

in the follow-up co-ordinate as

t2
6
(x@, t)"P

=

0
P

=

0

t2
p
(h

2
!h

1
)h(x#vh

1
, y, z!z

h
, h

1
)h (x#vh

2
, y, z!z

h
, h

2
) dh

1
dh

2
.

(48)

In addition, if p(t) is assumed to be a stationary process with zero mean, we have

p2
p
"<ar[p (t)]"t2

p
"R

p
(q Dq/0

)"constant. (49)

where p
p

and <ar[p (t)] are, respectively, the standard deviation and variance of
p(t). So we can rewrite equation (48) as

p2
u
(x@, t)"t2

u
(x@, t)"CP

=

0

h(x#vh, y, z!z
h
, h) dhD

2
R

p
(q Dq/0

), (50)

where p
6
and t2

6
are the standard deviation and variance of the displacement "eld

respectively.
The physical explanations of equations (46)}(48) are essentially di!erent

from the usual explanations of random problem in "xed co-ordinates, such
as equations (25) and (27). The latter refer to the time average and time
autocorrelation of the random response at a "xed point x"(x, y, z), whereas the
former refer to the spatial average and spatial-time correlation for the random
response at a moving "eld (x#vt, y, z) in "xed co-ordinates or a stationary "eld
point x@"(x@, y@, z@) in the follow-up co-ordinates. Figures 2 and 3 illustrate the



Figure 2. Random response of "eld points in "xed coordinates: (a) location of points A(x, y, z),
B(x#x

0
, y, z), C(x#zx

0
, y, z) and random responses of (b) A, (c) B and (d) C; v"0.

Figure 3. Random response of "eld points in follow-up coordinates: (a) "eld point location as in
Figure 2, (b) responses of "eld points; t

0
"x

0
/v.
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random response of a "xed point in "xed co-ordinates and in the follow-up
co-ordinates respectively.

We de"ne the relationship between the frequency response function and the
impulse unit response function in the follow-up coordinates as

H(x@, u, t)"P
=

0

h(x#vh, y, z!z
h
, h) e~*uh dh. (51)
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Taking the Fourier transform of equation (47), the right-hand side becomes the
follow-up PSD in follow-up co-ordinates. From equation (51), the left-hand side of
equation (47) leads to an expression of the follow-up PSD in relation to the load
PSD, i.e.,

S
6
(x@; u, v)"DH(x@; u, v) D2S

p
(u). (52)

Similarly, an expression for the time autocorrelation function can be obtained by
taking the Fourier inverse transform of equation (52), i.e.,

R
6
(x; q Dq/t2~t1

)"(2n)~1 P
=

~=

DH (x@; u, v) D2S
p
(u) e*uq du. (53)

Hence, the mean-square function is described by

t2
6
(x@)"R

6
(x@; q Dq/0

)"(2n)~1 P
=

~=

DH(x@; u, v) D2S
p
(u) du. (54)

Generally, the response PSD at a "xed point x"(x, y, z) in a "xed co-ordinate
represents the energy distribution in di!erent frequency ranges. This means that
we may conduct a stationary process spectral analysis of the time history of
the random response at "eld point A (or B or C, etc.; see Figure 2). However, the
follow-up PSD shown on the left-hand side of equation (52) indicates the frequency
component of the random response at a "xed point x@"(x@, y@, z@) in the follow-up
co-ordinate or a series of moving "eld points in the "xed co-ordinate. This implies
that stationary process spectral analysis can be performed on the random response
at a "eld point on the line AC for any given time t

1
(see Figure 3).

6. DISCUSSION

According to the theory of linear partial di!erential equations, we may construct
solutions to equations by integrating the fundamental solution or the so-called
Green's function of the equation. This can be done because of the superposition
principles for linear equations [22].

Response information for both the amplitude distribution and the frequency
component of media to moving sources is needed for optimum control and
performance prediction of structures. To ful"ll this purpose, it is necessary to use
spectral analysis techniques to obtain the required information. Since currently
available techniques for non-stationary process spectral analysis are not necessarily
valid in practice, the follow-up spectral analysis developed in the paper provides
a sound theoretical basis and powerful technique. The advantage to using follow-
up spectral analysis is that the physical explanations of the follow-up PSD allow us
to interpret the results of the moving source problem just like the results of the
source-"xed problem. Therefore, we recommend follow-up PSD rather than
generalized PSD (non-stationary process spectral analysis) as a more useful
technique for both theoretical analysis and practical applications in the future.
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Readers may refer to reference [11] for more detailed application of the theory of
this paper.

7. CONCLUSION

The response of linear systems to moving stochastic sources is analyzed in the
paper. We show that although the random response of a linear system under a "xed
stationary stochastic source retains the property of stationary, the same is not true
under a moving stationary stochastic source. Follow-up co-ordinates are developed
to overcome the di$culty of performing spectral analysis for non-stationary
processes. This paper presents a theoretical foundation for treating the moving
deterministic source problem and the moving stochastic source problem. Con-
clusions drawn here are applicable to linear systems in the "elds of elastodynamics,
acoustics, etc.
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APPENDIX A: NOTATION

F(x, t) moving source
H( ) ) Heaviside step function
d( ) ) Dirac delta function
v source velocity
p(t) source magnitude
G[ )] Green's function
u[ ) ] response function of linear systems
h[ ) ] impulse response function
H[ )] frequency response function
S( ) ) power spectral density
R( ) ) correlation function
E[ )] expectation
p2 variance
t standard deviation
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